H=-16t^2+32+3

Simple and best practice solution for H=-16t^2+32+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+32+3 equation:



=-16H^2+32+3
We move all terms to the left:
-(-16H^2+32+3)=0
We get rid of parentheses
16H^2-32-3=0
We add all the numbers together, and all the variables
16H^2-35=0
a = 16; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·16·(-35)
Δ = 2240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2240}=\sqrt{64*35}=\sqrt{64}*\sqrt{35}=8\sqrt{35}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{35}}{2*16}=\frac{0-8\sqrt{35}}{32} =-\frac{8\sqrt{35}}{32} =-\frac{\sqrt{35}}{4} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{35}}{2*16}=\frac{0+8\sqrt{35}}{32} =\frac{8\sqrt{35}}{32} =\frac{\sqrt{35}}{4} $

See similar equations:

| 9p+7=16 | | -10+5x+7x+70=180 | | 11n+5.5=71.5 | | −39=n+12 | | 2^(5x)=32^(2x+6) | | 25+30x=1000-20x | | 9+5r+6r=-3+5r | | y/3-15=8 | | -7.2=x+9.88 | | -3=a-54 | | 6.6=w—1.2 | | 4(6)-6y=12 | | ¼x-13=¼(x+13) | | 4u+13=93 | | 3k-8=-4k+6 | | S=4×3.14r2 | | Y=19x+50 | | x=1083-12x | | x=10.4+2.6 | | 12(4i+8)=−2 | | 3j-4-9j=-8-5j | | x=276-3x | | x=10.4 | | 9-a=40 | | 8f+3=9f+6 | | X+(x*0.03)=150000 | | 135-16=8y+15 | | 10r^2+9=-191 | | 5x+7/4=8 | | 4c=–7+3c | | 1+9c=c+10+9c | | 4(1x+8)=-2(1x+2) |

Equations solver categories